Premium Only Content
							This video is only available to Rumble Premium subscribers. Subscribe to
							enjoy exclusive content and ad-free viewing.
					
								 
			Test Deployed Sklearn (Scikit-learn) Model Using GCP Web Interface (Console)
								4 years ago							
						
														12						
								
								
												python					
								
												programming					
								
												coding					
								
												data science					
								
												machine learning					
								
												artificial intelligence					
								
												analytics					
								
												data analysis					
								
												software engineering					
								
												computer science					
								
												ml deployment					
					
					
			
	
					In this video, we'll walk through how to test your deployed sklearn model. We'll cover how to create the data instances needed and how to make predictions using the GCP AI Predict console GUI.
Loading  comments...				
			
		- 	
				 6:44 6:44Datakademy4 years agoDeploy Sklearn (Scikit-learn) Model Using GCP AI Platform Predict Console Version80
- 	
				 6:55 6:55Datakademy4 years agoDeploy Sklearn (Scikit-learn) Model From Command Line8
- 	
				 6:03 6:03Datakademy4 years agoTrain and Save Sklearn (Scikit-learn) Model for Deployment on GCP13
- 	
				 0:37 0:37DeltaWhiskeyDW4 years agoTest Images Using Blinds39
- 	
				 2:02 2:02The PyTorch Channel4 years agoTutorial 2: Train a linear regression model using the SGD optimizer35
- 	
				 17:23 17:23The PyTorch Channel4 years agoTutorial 8: Handwritten digit image classification using a logistic regression model78
- 	
				 35:23 35:23The PyTorch Channel4 years agoTutorial 19: Train a sentiment analysis model using Embedding and RNN691
- 	
				 8:29 8:29The PyTorch Channel4 years ago $0.02 earnedTutorial 18: Train a GRU/LSTM model using the MNIST dataset561
- 	
				 0:38 0:38NTD News4 years agoAmazon Can Be Regulated Using Existing Model: Expert803
- 	
				 5:27 5:27The PyTorch Channel4 years agoTutorial 9: Handwritten digit image classification using a deep neural network model65